Jörg Kindermann ist wissenschaftlicher Mitarbeiter am Lamarr-Standort des Fraunhofer Instituts IAIS in Sankt Augustin. Sein Forschungsinteresse ist auf die Anwendung neuer Verfahren des Deep Learning und allgemeiner der Künstlichen Intelligenz auf Fragestellungen der Linguistik ausgerichtet. Spaß bereitet es ihm dabei besonders, Lösungen in die Praxis zu bringen.
Sogenannte Foundation-Modelle entwickeln sich schnell und können bereits qualitativ anspruchsvolle Aufgaben automatisiert durchführen und unterschiedliche Medien gleichzeitig betrachten. Dieser Beitrag wirft einen Blick hinter die Kulissen der großen Sprachmodelle.
Mehr lesen
Sprachmodelle mit Milliarden von Parametern können sinnvoll Fragen beantworten und scheinen durch „Lesen“ Text- und Weltverständnis aufzubauen. Ihre Komplexität ist undurchschaubar, aber sie können lernen, sich zu erklären.
Mehr lesen
GANs ermöglichen ohne die Vorgabe von Regeln oder anderem Expertenwissen, allein aus großen Datenmengen neue, domänenspezifische Beispiele zu erzeugen. In diesem Beitrag erklären wir, wie GANs für die Übersetzung genutzt werden.
Mehr lesen
In diesem Beitrag erklären wir den Ansatz der generativen neuronalen Modelle. Diese haben in Anwendungsbereichen, in denen handkuratierte Daten für überwachtes Lernen schwer oder nicht erhältlich sind, gute Erfolge erzielt.
Mehr lesen
Um in umfangreichen Textsammlungen eine zielgerichtete Suche zu ermöglichen, ist eine Vergabe von Stichworten üblich. Wir beschreiben Methoden, wie man kurze Texte vollautomatisch mit inhaltsbezogenen Stichworten versehen kann.
Mehr lesen